
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 25 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Liquid Crystals
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713926090

A statistical study for evolving arrays of nematic point defects
P. Biscari; G. Guidone Peroli; E. G. Virga

Online publication date: 06 August 2010

To cite this Article Biscari, P. , Peroli, G. Guidone and Virga, E. G.(1999) 'A statistical study for evolving arrays of nematic
point defects', Liquid Crystals, 26: 12, 1825 — 1832
To link to this Article: DOI: 10.1080/026782999203463
URL: http://dx.doi.org/10.1080/026782999203463

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713926090
http://dx.doi.org/10.1080/026782999203463
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Liquid Crystals, 1999, Vol. 26, No. 12, 1825± 1832

A statistical study for evolving arrays of nematic point defects

P. BISCARI*

Dipartimento di Matematica, Politecnico di Milano, via Bonardi 9, 20133 Milano,
Italy; Istituto Nazionale di Fisica della Materia, 27100 Pavia, Italy

G. GUIDONE PEROLI and E. G. VIRGA

Dipartimento di Matematica,
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We study the dynamics of nematic point defects within a capillary tube enforcing homeotropic
anchoring on the lateral boundary. At the initial time a great many of them, with topological
charges alternating in sign, may be created at random along the axis of the cylinder; they
then evolve, subject to their mutual interactions, and eventually reach an equilibrium
con� guration, possibly after having su� ered many annihilations. Here we see how the arrays
of surviving defects depend on both the length of the tube and the number of initial defects.
We arrive at the equilibrium distribution of the distance between defects by solving the
appropriate evolution equations over many simulations. The information we thus obtain on
the average spacing could be tested experimentally.

1. Introduction Arrays of defects give rise to interesting co-operative
In 1970 Dzyaloshinski ÌÀ [1] predicted that a nematic phenomena which have been observed in cylinders with

liquid crystal con� ned to a cylindrical tube which radius R in the range 2–3 mm [4] and, more recently,
enforces homeotropic anchoring on its lateral boundary even in cylinders with radius well below a micron [5–7].
could only exhibit a splay deformation of the director These latter observations were performed with the aid of
n, which would thus take on a radial con� guration with deuterium-nuclear-magneti c resonance, and the average
a line disclination along the axis. However, Cladis and spacing in the arrays was determined by comparing
Kleman [2], as well as Meyer [3], proved that there is the experimental spectra and those obtained by either
another con� guration for n, which for cylinders with simulating numerically the director � eld or employing a
diameter larger than 0.1 mm would indeed store less trial function to describe it.
energy than the radial one: this is the escaped � eld, It has long been known that when two defects with
where n is continuous throughout the cylinder and opposite topological charges are su� ciently close to one
exhibits a bend deformation as it � ips out of the plane another, they attract each other, coalesce, and � nally
orthogonal to the axis. Actually, there are two such annihilate leaving no trace behind. On the other hand,
� elds: one escapes upwards and the other downwards; when two defects are su� ciently far away, they do not
they can be transformed into one another by a re� ection move, and behave as if the interaction force between
through a plane orthogonal to the axis, and so they them were screened. A theoretical model for the inter-
store the same energy density. Optical observations action between two defects is developed in [8]; it
con� rmed the existence of these escaped con� gurations, estimates the critical distance dc , above which the inter-
but they also revealed the presence of arrays of point action ceases, as dc . 2.2R. Within an array the interactions
defects; that is, discontinuities in the director � eld sitting between defects are more involved, since in general one
on the axis of the tube. A defect appears wherever the defect feels the presence of two others from opposite
opposite escaped � elds come together, and so in an array,

sides: an array becomes stable only when every defect is
the topological charge, which bears information on the

screened from the two adjacent defects, possibly after
director � eld around each defect, alternates in sign.

many annihilations have taken place. Here we aim at

describing for a large number of defects the dynamical
evolution leading to stable arrays.*Author for correspondence.
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1826 P. Biscari et al.

We extend the model introduced in [8] and [9] to In [13] a model for the dynamics of a cluster of
defects was built on the premiss that F is the potentialaccount for a general system with N defects, writing both
energy of the system and D /2 its Rayleigh’s dissipationthe elastic free energy and the dissipation function for a
function. The equations of motion of this dynamicalsystem with an arbitrary number of defects. Within this
system can be derived in the classical form, with themathematical setting, we perform a statistical analysis
only omission the kinetic terms, provided that F isto answer the following questions. Starting from a given
given as a function of the Lagrangian coordinates of thenumber of defects, how many of them are likely to
defects and D as a function of these coordinates andsurvive at the end? How does this number increase if
their time derivatives (cf. e.g. p. 231 of [14]). Thesemore defects are present at the beginning? Does the
functions were obtained by resorting to an approximatenumber of surviving defects depend on the length of the
description of n around a defect of either sign, whichtube? How are the surviving defects distributed along
involves only a � nite number of parameters. This methodthe axis?
is explained in detail in [15] and need not be repeatedThe plan of the paper is the following. In § 2 we
here. Thus, defects become similar to particles, for whichderive the di� erential equations that govern the dynamics
it su� ces to assign the appropriate functions F and D .of the array. Section 3 is devoted to the analysis of

The model developed to describe the director � eldthe results of the numerical simulations based on these
around a point defect has been employed in [9] andequations, which are then discussed in § 4. Finally, in
[13] to study the evolution of a system with � ve defectsthe Appendix, we show how to compute within our
alternating in charge: an analytical study is performedmodel the dissipation of the viscous torques acting on
there, along the lines of thought described above. Herethe director � eld for a system with an arbitrary number
we consider N defects with alternating charges movingof defects.
along the axis of a cylinder with length L. To identify
the positions of the defects in the system we use the

2. Dynamical system following coordinates: j, which is the co-ordinate along
Here we assume that the motion of the defects along the axis of the upper defect scaled to the radius R of the

the axis of a capillary tube enforcing homeotropic tube, and
anchoring on the lateral boundary is due only to the
rearrangement of the director � eld and that this does r

i
)

d
i

2 Ó ap R
for i = 1, ¼ , N Õ 1,

not entrain any hydrodynamic motion of the � uid:
in other words, the back-� ow is completely neglected.

where a) 2 ln 2 Õ 1, and d
i
denotes the distance between

The equations of nemato-dynamics have recently been
the i-th defect and the (i +1)-th, the � rst defect being

rederived by Leslie in [10] from a dissipation principle
the upper one.

which, in the absence of back-� ow, states that the energy
In our model, two defects interact as long as the distance

D dissipated in the motion must balance the time
between them does not exceed dc ) 2 Ó ap R . 2.2R, and

derivative of the elastic free energy F :
so the defects with labels i and (i +1) interact as long
as their scaled distance r

i
does not exceed 1. The reasonFÇ +D = 0. (1 )

is that the distortion in the director � eld around a point
No account is taken in (1) of any kinetic energy: no defect has a � nite length, which is precisely Ó ap R:
hydrodynamic motion is indeed present, whereas the farther away, the escaped con� gurations prevail. Thus,
director motion, though present, has negligible inertia. when the distance between two defects with opposite

Let B be the region in space occupied by the liquid topological charges is larger than dc , bringing them closer
crystal. The elastic free energy can be given the form to one another would formally amount to displacing

regions with one escaped � eld into regions with the
other one. Clearly, no change in the elastic free energyF [n] =

K

2 P
B

| = n|2 dv, with K > 0,
is involved in this exchange, since both escaped � elds
store the same energy density: the defects freely � uctuate

which is the one-constant approximation to Frank’s in the tube, each unaware of the presence of the other.
free-energy functional [11]. In the absence of back-� ow, A detailed explanation for this can be found in [8].
D reduces to As illustrated in detail in the Appendix, it can be

proved by mathematical induction that the elastic free
energy and the dissipation have the following forms inD = c1 P

B
Aqn

qt B
2

dv,
terms of the coordinates of the system:

where c1 > 0 is the rotational viscosity (cf. e.g.
F

N
(r)) 2pK R Ó ap �

N Õ 1

i=1
(1 Õ ln r

i
)r

i
(2)

Section 5.1.4.3 of [12]).

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
5
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1827Statistical study of N defect points

and 3. Surviving defects
Here we describe the outcomes of numerical simulations

performed on several di� erent systems of interacting
D

N
(j, r, jÇ , rÇ )) 2pc1 aR3 GSp

a A1 + �
N Õ 1

i=1

r
iB jÇ 2

defects, by varying both the length of the cylinder and
the number of initial defects. We considered cylinders
with radius R and length L equal to 10, 25, 50, and 100+2p Ó apC �

N Õ 1

k=1
Abr

k
+2 �

N Õ 1

i= k+1

r
i
+1B rÇ 2

k times the critical distance dc = 2 Ó ap R, above which two
defects become independent from one another. Thus, for
example, when L= ndc , the maximum number of defects+ �

i< j
A2r

j
+4 �

k> j
r

k
+2BrÇ

i
rÇ

jD that can be packed at equilibrium is precisely n +1: this
maximum packing can be obtained only in the con-

Õ 2pjÇ �
N Õ 1

k=1
Ar

k
+2 �

N Õ 1

i= k+1
r

i
+1BrÇ

kH � guration where the � rst defect is placed just on one
base of the cylinder, and all others are equally spaced
at the distance dc .where r) (r1 , … , r

N Õ 1
) and rÇ ) (rÇ 1 , … , rÇ

N Õ 1
). The

For every prescribed value of L, we also varied theequations of motion for this system are
number N i of initial defects: for each choice of L and
N i , we performed 50 000 simulations to obtain signi� cant
averages on both the number of surviving defects andG

qF
N

qj
+

1

2

qD
N

qjÇ
= 0

qF
N

qr
i

+
1

2

qD
N

qrÇ
i

= 0 for i = 1, ¼ , N Õ 1.

(4) their distribution along the axis. The defects were initially
placed at random along the axis, and then allowed to
evolve according to the di� erential equations of motion
(5). Clearly, during the evolution the whole array splits

It should be noted that the dissipation principle in (1) is
into sub-arrays of interacting defects, to which equations

identically satis� ed along all solutions of equations (4),
(5) are to be applied separately. In particular, when

since D
N

is quadratic in the variables (jÇ , rÇ ). From (2)
a sub-array consists of just two defects separated by a

and (3), the di� erential equations in (4) become
distance less than dc , their interaction always results in
an annihilation. Since the arrays are always constituted
by defects with alternating charges, all interactions are
attractive, and the evolution always leads every singleGjÇ =

Ó ap

1 + �
N Õ 1

i=1

r
i
C �

N Õ 1

i=1
A1 +r

i
+2 �

N Õ 1

k= i+1

r
kBrÇ iD

1

T
ln r = ArÇ

(5 ) sub-array to a global contraction, with both head and
tail, as it were, pushed inwards. This property implies
that every time the distance between two adjacent defects
grows up to the critical value dc , the sub-array to which
they belong breaks into two others, which will neverwhere T ) apc1 R2 /K is a relaxation time, and the entries
interact again with one another.of the matrix A are de� ned by

3.1. Density of surviving defects
For given L and N i , we call N f the total number of

defects in the � nal con� guration, which does not furtherAii
) 2Abr

i
+2 �

N Õ 1

j= i+1
r

j
+1B Õ

A1 +r
i
+2 �

N Õ 1

j= i+1

r
jB2

�
N Õ 1

j=1
r

j
+1 evolve because all surviving defects are farther apart

than dc , so that they feel no force. To represent the data,
it is expedient to de� ne the densities

A
ki

) 2Ar
i
+2 �

N Õ 1

j= i+1

r
j
+1B

ni )
N i Õ 1

L
dc , nf )

N f Õ 1

L
dc .

They are, respectively, the numbers of initial and
Õ
A1 +r

k
+2 �

N Õ 1

j= k+1
r

jBA1 +r
i
+2 �

N Õ 1

j= i+1
r
jB

�
N Õ 1

j=1

r
j
+1

surviving defects to be found on average over the critical
distance. Figure 1 shows how the density of surviving
defects nf depends on both the density of initial defects

for k< i ni and the length of the cylinder L. Every point in the
� gure corresponds to an average over 50 000 simulationsAki

) Aik
for k> i

all made for the same values of L and N i . Several
remarks are needed to understand better the resultswhere both i and k range in {1, … , N Õ 1}. In the

following section equations (5) are studied numerically. shown in this � gure.
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1828 P. Biscari et al.

length L/2. There are equilibrium con� gurations
in the pair of shorter cylinders that lead to further
annihilations, when seen as con� gurations for the
longer cylinder, since a pair of defects closer than
dc , one in each half-cylinder, tend to annihilate in
the whole cylinder.

3.2. Random packing model
The results of our simulations can also be predicted

quite accurately by the following naÌ̈ ve model, which
will be referred to as the Random Packing Model. Suppose
we try to pack N i defects on the axis of a cylinder with
length L . We begin by placing at random the � rst defect.
Then, we lay the second defect: if the two defects happen
to lie at a distance smaller than dc , we assume they
will annihilate, and so we simply delete them. Later, we
place the third defect, and we check again whether it

Figure 1. The density nf of surviving defects as a function of annihilates with one of the � rst two defects, if they are
the density ni of initial defects.

still present. Thus, at each stage we put a defect at
random on the axis and, if the defect nearest to it falls
at a distance smaller than dc , we annihilate both. After

(1) For each prescribed length of the cylinder, as long N i attempts, we simply count the numbers of surviving
as the defects are created at random along the defects. Figure 2 shows a comparison between the out-
axis, as is always the case in our simulations, there comes of both the analytic simulation and the Random
is a maximum number of defects that may survive Packing Model obtained for L = 10dc and L = 100dc .
in the cylinder. If we recall that the theoretical Here the continuous line also comes from averages over
limit on (N f Õ 1) is L/dc , so that nf cannot exceed 50 000 di� erent attempts for each value of L and N i .
1, it is quite a surprise to discover that on average The results obtained with the Random Packing
less than 30% of the maximum number of allowed Model are clearly more accurate when N i is small, since
defects survive in the cylinder. This result also the main di� erence between the two models is that the
allows us to estimate the average distance between analytic simulation takes into account the interactions
defects in the � nal equilibrium con� gurations, between all defects belonging to the same sub-array,
which is formally de� ned as while the Random Packing Model only considers pair

interactions: large sub-arrays, however, are not probable
df )

L

7 N f 8 Õ 1
when N i is small. In any case, the predictions also remain
quite accurate when N i increases and many defects

where 7 N f 8 is the average of N f over all simu-
lations with given L and N i . Figure 1 shows that
for ni > 1 the average distance df ranges from 3dc

to 4dc . Finally, recalling that dc . 2.2R, we arrive
at the following estimate:

df = 8R Ô 2R. (6 )

(2) For every � xed value of L, the density nf of
surviving defects reaches a plateau when ni

approaches 1, that is, when (N i Õ 1) approaches
L/dc : further packing of initial defects gives only
a negligible increase in the number of surviving
defects.

(3) The density nf decreases for longer cylinders. This
e� ect can be explained as follows. Consider, for
example, a cylinder with length L , and compare Figure 2. The density nf of surviving defects as a function of
the number of defects surviving in it with the the density ni of initial defects, in both the analytic and

Random Packing models.sum of those surviving in two cylinders with
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1829Statistical study of N defect points

interact together. This fact indicates that the charac- array reaches its equilibrium con� guration. Here, all
departures from a uniform distribution, which would beteristic time for a single annihilation is sensibly smaller

than the characteristic time of co-operative interactions. predicted by the Random Packing Model, are due to
the co-operative interactions between defects. In � gure 3,
for every 0 < x < L , the local average df (x) is compared3.3. Distribution of defects

Figure 3 explains how the surviving defects tend to with df .
Figure 3 (a) represents the simulations made for cylindersbe distributed along the axis of the cylinder. Let x be

a coordinate on this axis and let df (x) be the average with length L = 10dc . It shows a curious oscillatory
behaviour of the distribution df (x): near the ends of theover all � nal equilibrium con� gurations of the distance

between the two defects with coordinates nearest to x. cylinders, almost at the distance dc , df (x) is 1% greater
than its average value df . Then, at the distance 2dc fromThus, wherever df (x) is sensibly smaller than df , the

defects tend to remain closer to one another, though the ends, df (x) is close to its minimum value, which is
4% smaller than df . Finally, the maximum value of df (x)still at equilibrium. Clearly, the distance between two

adjacent defects can never be smaller than dc when the falls in the middle of the cylinder. Thus, although all

Figure 3. Distribution of the dis-
tance between defects along the
axis of a cylinder with length
10dc (a), 25dc (b), 50dc (c), and
100dc (d).
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1830 P. Biscari et al.

these e� ects are small, the defects prefer to be packed at defects is to be thought of as if it were an independent
sub-array of a larger one; that is, as if next to both thea distance almost 2dc from the ends.

Figure 3 (b) shows how the situation changes when � rst and the last defect there were two peripheral defects,
each at a distance greater than dc . Therefore, in 81% ofthe cylinder is longer (L = 25dc ). All the e� ects present

in � gure 3 (a) are here con� rmed, and even magni� ed, cases the average distance between the only surviving
defect and the peripheral ones is at least 3dc . 6.6R.since the minimum value of df (x) is now 7% below

the average value. The most interesting fact is that the From this argument we can roughly estimate the average
distance df to be about 6R. Here we have consideredminimum of df falls again at a distance almost 2dc from

the ends, thus indicating an edge e� ect, since this distance arrays of defects initially distributed at random along
the axis of a cylinder with � xed length. In this case thedoes not scale with L.

Figure 3 (c), which refers to a cylinder with L= 50dc , array splits into indepenent sub-arrays that will never
interact with one another, as each will tend to collapsecon� rms this trend: df (x) still attains its minimum at a

few dc lengths from the ends, where it is now more than towards its middle. Thus, the average distance df esti-
mated above must be greater than the one computed in10% below the average value df . On the other hand,

there is no trace here of the relative maximum that df (x) [9], since now we are also taking into account defects
that were never closer than the critical distance dc .attains for shorter cylinders at a distance close to 1dc

from the ends. Actually, the whole probability distribution of the
equilibrium distances between defects can be estimatedFigure 3 (d ) gives a clear idea of how defects tend to

be distributed in cylinders with large aspect ratios (here with our method: � gure 4 shows the results obtained from
500 000 runs made on a cylinder with length L = 50R.L/2R > 100). The distribution df (x) is almost uniform in

the middle, as one would have expected. Moreover, an Half the runs were made with an initial number of
defects N i = 25, and half with N i = 26, so that the e� ectsedge e� ect, extended over the length 10dc , tends to pack

the defects closer to one another: the minimum distance due to the di� erent cardinality of N i would cancel. This
graph clearly explains why the experimental studies [5–7]between defects, which here is almost 15% smaller than

df , is attained at a distance of a few dc lengths from revealed an average distance between surviving defects
close to 3R: in fact, this is the most probable distancethe ends.
to arise in the � nal equilibrium con� guration. Larger
distances, of the order of 10R or higher, have a smaller4. Discussion

We have extended the model � rst introduced in [9] probability to occur, but the average distance we have
estimated in (6) clearly accounts for all of them: df isto describe the motion and annihilation of nematic point

defects distributed along the axis of a cylindrical tube.
In [9] a system with only � ve initial defects was con-
sidered: they formed arrays with the distance between
adjacent defects always less than dc , so that from the
start all defects participated in the motion. It was proved
that in 81% of the cases only one defect survives at the
end, while in the remaining 19% of cases three defects
survive. A further analysis of this case showed that the
average distance df in the surviving arrays with three
defects is close to 2.9R. This result can also be explained
by a naÌ¨ve argument. Since point defects always annihilate
in pairs to keep constant the total topological charge of
the system, only two cases can result from the evolution
of � ve defects: either one or three defects survive. In the
former case, there is no average distance to talk about.
In the latter case, the distance beween two adjacent
surviving defects must always range between dc and 2dc ,
because an equilibrium con� guration with three defects Figure 4. Probability distribution of the distance between

defects. The maximum of the probability is attained nearcan only be obtained from the coalescence of the three
the critical distance d = dc . This means that most of theinner defects into the one in the middle. Thus, df is
defects remain at a distance d . 2.2R from one another.expected to be close to 1.5dc , that is, df . 3R.
The variance of the distribution is s = 7.2R. The data

To frame this result into the present analysis, we were obtained from 500 000 runs made on a cylinder with
should also account for the other 81% cases, where a length L= 50R. The probability density P (d ) is expressed

in arbitrary units.single defect survives. Thus, the initial array with � ve
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1831Statistical study of N defect points

approximatel y 8R because the probability distribution is near the N-th defect: this latter now interacts with the
new one, and so the new parameter r

N
must also behighly non-symmetric. More detailed experiments could

possibly reveal other features of the distribution of introduced. The contribution to the dissipation that in
equation (3) comes from the region beyond the N-thresidual distances predicted by our model.
defect is the same as the one which now comes from the
region beyond the (N +1 )-th defect, apart from renaming
the parameters. In computing D

N+1
this contributionWe gratefully acknowledge an enlightening discussion

can formally be accounted for by adding to D
N

thewith G. Durand on the Random Packing Model. One
quantityof us (G.G.P.) also wishes to thank the Italian Istituto

Nazionale di Alta Matematica for having supported
D

N,N+1her work.

) 2pc1 aR3 A2p Ó aprÇ 2

N
Õ 2pjÇ rÇ

N
+4p Ó aprÇ

N �
i<N

rÇ
iB .

Appendix
Proof by induction Two further contributions come to the dissipation arising

Formula (3) can be given the following proof by from the (N +1)-th defect: they can be computed as
induction. We know from [13] that for a system of three illustrated in [13], and together amount to
defects the dissipation is given by

D
N+1,N

) 2pc1 aR3 CS p

a
r

N
jÇ 2 +4p Ó apr

NA �
i<N

rÇ
iB2

D 3 (jÇ , rÇ 1 ,rÇ 2 )= 2pc1 aR3 GSp

a
(1 +r1 +r2 )jÇ 2

+2p Ó ap(1 +b)r
N

rÇ 2

N
Õ 4pr

N
jÇ �

i<N
rÇ

i
+2p Ó ap [(br1 +2r2 +1 )rÇ 2

1

Õ 2pjÇ r
N

rÇ
N

+2p Ó apr
N

rÇ
N �

i<N
rÇ

iD .+(br2 +1 )rÇ 2
2 +(2r2 +2 )rÇ 1 rÇ 2 ]

Õ 2pjÇ [(r1 +2r2 +1 )rÇ 1 +(r2 +1 )rÇ 2 ]H We thus arrive at

D
N,N+1

+D
N+1,N(A1)

= S a

p
r

N
jÇ 2 +2p Ó apAbrÇ 2

N
r
N

+rÇ 2

N
+2r

N �
i<N

rÇ 2

iBwhere, at variance with formula (3.23) in [13], we have
set f0 = j Õ 2 Ó apr1 and exchanged the rôles of r1 and
r2 . Equation (A1) easily follows from (3) when N = 3. +2p Ó ap
Moreover, we now proceed to show that by use of (3 )
the dissipation of a system with N +1 defects can be Ö A2r

N
rÇ

N �
i<N

rÇ
i
+4r

N �
i< j<N

rÇ
i
rÇ

j
+2rÇ

N �
i<N

rÇ
iBexpressed as

D
N+1

(j, r, jÇ , rÇ ) Õ 2pjÇ Ar
N

rÇ
N

+2r
N �

i<N

rÇ
i
+1B

= 2pc1 aR3 GS p

a A1 + �
N

i=1
r

iB jÇ 2
which must be added on the right-hand side of
equation (3) to give D

N+1
. One easily sees that this

reproduces formula (A2), and so the proof by induction
+2p Ó apC �

N

k=1
Abr

k
+2 �

N

i= k+1
r

i
+1BrÇ 2

k is complete.

References+ �
i< j<N

A2r
j
+4 �

N> k> j
r

k
+2BrÇ

i
rÇ

jD [1] Dzyaloshinskii©, I. E., 1970, Zh. Eksp. T eor. Fiz., 31,
773 (Sov. Phys. JETP, 33 (1970), 773).

[2] Cladis, P. E., and KleÁ man, M., 1972, J. Phys. (Paris),Õ 2pjÇ �
N

k=1
Ar

k
+2 �

N

i= k+1

r
i
+1B rÇ

kH (A2)
33, 591.

[3] Meyer, R. M., 1973, Phil. Mag., 77, 405.
[4] Kuzma, M., and Labes, M. M., 1983, Mol. Cryst. liq.

where now r) (r1 , … , r
N

) and rÇ ) (rÇ 1 , … , rÇ
N

). In fact, Cryst., 100, 103.
when we add the (N +1)-th defect to a system with N [5] Crawford, G. P., Vilfan, M., Doane, J. W., and

Vilfan, I., 1991, Phys. Rev. A, 43, 835.defects, we modify the structure of the director � eld only

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
5
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



1832 Statistical study of N defect points

[6] Crawford, G. P., Allender, D. W., Doane, J. W., [11] Frank, F. C., 1958, Discuss. Faraday Soc., 25, 19.
[12] De Gennes, P. G., and Prost, J., 1993, T he Physics ofVilfan, M., and Vilfan, I., 1991, Phys. Rev. A, 44, 2570.

[7] Crawford, G. P., Allender, D. W., and Doane, J. W., L iquid Crystals, 2nd Edn (Oxford: Clarendon Press).
[13] Guidone Peroli, G., and Virga, E. G., 1998, Physica D,1992, Phys. Rev. A, 45, 8693.

[8] Guidone Peroli, G., and Virga, E. G., 1996, Phys. 111, 356.
[14] Whittaker, E. T., 1989, A T reatise on the AnalyticalRev. E, 54, 5235.

[9] Guidone Peroli, G., and Virga, E. G., 1997, Phys. Dynamics of Particles and Rigid Bodies, 4th Edn
(Cambridge: Cambridge University Press).Rev. E, 56, 1819.

[10] Leslie, F. M., 1992, Continuum Mech. T hermodyn., 4, [15] Guidone Peroli, G., and Virga, E. G., 1997, IMA
J. appl. Math., 58, 211.167.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
5
9
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1


